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We consider diffusive lattice gases on a ring and analyze the stability of their density profiles conditionally
to a current deviation. Depending on the current, one observes a phase transition between a regime where the
density remains constant and another regime where the density becomes time dependent. Numerical data

confirm this phase transition. This time dependent profile persists in the large drift limit and allows one to
understand on physical grounds the results obtained earlier for the totally asymmetric exclusion process on a

ring.

DOI: 10.1103/PhysRevE.72.066110

I. INTRODUCTION

Stochastic lattice gas models have been extensively stud-
ied recently as they are among the simplest examples of non-
equilibrium systems. They describe particles evolving on a
lattice according to some stochastic dynamics which do not
satisfy detailed balance [1,2]. For example, the lattice gas
dynamics might satisfy detailed balance in the bulk dynam-
ics but not at the boundaries, in such a way that it mimics a
diffusive system in contact with reservoirs at unequal densi-
ties or temperatures [3-6]. The detailed balance might also
be broken in the bulk, for example to represent the effect of
a driving field [7,8].

A powerful approach to understand the steady state of
nonequilibrium systems was developed by Bertini, De Sole,
Gabrielli, Jona-Lasinio, and Landim, as a macroscopic fluc-
tuation theory (MFT) which gives, for large diffusive sys-
tems, the probability distribution of trajectories in the space
of density profiles [3,4]. The MFT relies on the hydrody-
namic large deviation theory [2,8,9] which provides esti-
mates for the probability of observing atypical space and
time dependent density profiles. It gives a framework to cal-
culate a large number of properties of stochastic lattice gas,
such as the large deviation functional of the density profiles.
Recent developments of the hydrodynamic large deviation
theory [10,11] allowed one to estimate also the large devia-
tions of the current through the system. What the MFT pro-
vides is a variational principle from which one can write the
equations of the time evolution of the most likely density
profile responsible of a given fluctuation. What it does not
provide, in general, is the solution of these equations which
would give quantitative predictions for the distribution of the
fluctuations. So far, for the large deviation functional of the
density profiles in the steady state, the equations could only
be solved in a few cases of nonequilibrium systems with
open boundaries (the symmetric simple exclusion process
[4], the Kipnis, Marchioro, Presutti model [12,13]). For the
symmetric simple exclusion process (SSEP) the results of the
MFT were in full agreement with the results obtained
[5,6,14] from the exact knowledge of the weights of the mi-
croscopic configurations in the steady state.

In our previous work [11], we developed a theory to cal-
culate the large deviation function of the current through a
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long one dimensional diffusive lattice gas in contact at its
two ends with two reservoirs at unequal densities. Our ap-
proach was based on an assumption, the additivity principle,
which relates the large deviation function of the current of a
system to the large deviation functions of subsystems, when
one breaks a large system into large subsystems. This as-
sumption is in fact equivalent to the hypothesis, within the
hydrodynamic large deviation framework, that to observe,
for a very long time period 7, an average current g=Q/7,
the system adopts a profile with a shape, fixed in time, but of
course depending on ¢ (here Qy is the total number of par-
ticles transferred, say from the left reservoir to the system
during time 7). The additivity principle allows one to obtain
explicit expressions [11] for all the cumulants of the inte-
grated current Q7. The predictions of our theory were tested
in a few cases [11] and the results were found in complete
agreement with what was already known or what could be
derived by alternative approaches [15-17].

Recently, it was pointed out [10] that even if our predic-
tions [11] are valid for some diffusive lattice gas, it might
happen that, to produce an average current g over a long
period of time, the best profile is time dependent. The opti-
mal profile is a solution of a variational principle [10] and
one needs to optimize over the space and time dependent
profiles to determine whether or not the optimal profile is
time dependent. One of the goals of this paper is to analyze
this variational principle for lattice gas on a ring and to show
that depending on the parameters, the optimal profile may or
not be time dependent. This can be interpreted as a dynami-
cal phase transition.

Our paper is organized as follows. In Sec. II, we recall the
variational principle which allows one to calculate the large
deviations of the current in diffusive lattice gas. In Sec. III,
we consider a general lattice gas on a ring and show under
what conditions the flat profile becomes unstable. In Sec. IV,
we write the large deviation function of the current, when the
optimal profile has a fixed shape moving at a constant veloc-
ity. In Sec. V, we present exact numerical results on the
weakly asymmetric exclusion process for small system sizes
which give evidence that for some range of parameters, con-
sistent with the results of Sec. IV, the optimal profile is no
longer flat but becomes space-time dependent (for py=1/2 it
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is only space dependent). In Sec. VI, we analyze the limit of
a strong asymmetry and obtain a simple expression for the
large deviation function of the current, under the assumption
that the optimal profile becomes in this limit a step function.
In Sec. VII, we show that, even for a strongly asymmetric
case such as the totally asymmetric exclusion process, one
can exhibit time-dependent profiles determined by the Jensen
Varadhan functional [18] which give, for large system size,
the exact large deviation function of the current previously
calculated by the Bethe ansatz.

II. MACROSCOPIC FLUCTUATION THEORY

Let us consider, as we shall do it in the rest of this paper,
the time evolution of a one dimensional stochastic lattice gas
on a lattice of N sites. According to the hydrodynamic for-
malism [2], a given diffusive lattice gas can be characterized
by two functions D(p) and o(p) of its density p. One way to
define them [11] is to consider a one dimensional system of
length N connected to reservoirs at its two ends. For such a
lattice gas, the variance of the total charge Qr transferred
during a long time 7T from one reservoir to the other is given,
for large N, by definition of o(p) by

(©p _alp)
=t (1)
T N
when both reservoirs are at the same density p. On the other
hand, if the left reservoir is at density p+Ap and the right
reservoir is at density p, the average current is given, for

small Ap, by

(Qn) _D(p)Ap
o 2P @
T N

which is simply Fick’s law and defines the function D(p). In
the symmetric simple exclusion process o(p)=p(1—p) and
D(p)=1/2 [2] whereas in the Kipnis, Marchioro, and Presutti
model [12,13] o(p)=p? and D(p)=1/2. The effect of a uni-
form weak electric field of strength v/(2N) acting from left
to right on the particles is to modify Eq. (2) into

(O D(p)Ap L ralp)
T N N

3)

This equation follows from the linear response theory [2].

The coefficients D(p) and o(p) are sufficient to character-
ize a diffusive system at a macroscopic scale and on macro-
scopic times (see the Appendix). In particular, the probability
of observing the evolution of a density profile p(x,s) and a
rescaled current j(x,s) for 0<s<T/N? during a microscopic
time 7~ N? is given, according to the hydrodynamic large
deviation theory [10], by

Pro({j(x’s)’p(xss)}) -~ exp[_NIE}Q’T/Nﬁ(].aP)]’ (4)

where 7  is defined by

PHYSICAL REVIEW E 72, 066110 (2005)

I{O,t](i’ p)

- ftd fl [i(x.5) + D(p(x,9)p" (x,5) = vo(p(x,s)
= s | dx
., 20(p(x,s))

(5)

with p’=dp/dx and where the rescaled current j(x,s) is re-
lated to the density profile p(x,s) by the conservation law

dplx.s)  djlx.s)
ds dx

(6)

A formalism equivalent to this hydrodynamic large deviation
theory was developed [19,20] in the context of the full count-
ing statistics of the transport of free fermions through disor-
dered wires. A simple derivation of Egs. (5) and (6) is given
in the Appendix.

The large deviation function G(j,) of the current is then
defined as

Pro(Q?T = %) ~ exp(}%G(jo)) forlarge Tand N (7)
(in Eq. (7), one has first to take the limit 7—oo and then
make N large; in practice Eq. (7) should hold when 7> N? as
N? is the characteristic time of a diffusive system of size N).

Now according to Eq. (4), the large deviation function
G(j,) is given by

. L., .

G(.]O) = 11m|:— —mlnI[O,t](],p):| s (8)
t—o0 tp(x,s)

where the current j(x,s) satisfies for large ¢ and all x the

constraint

1 t
lim—f Jx,9)ds = j )
11— 0
with the profile p(x,s) and the current j(x,s) connected by
Eq. (6).

In the following, we will often consider, instead of Eq.
(7), the generating function of the current:

N1y ~ MM for large T (10)

and then, according to Egs. (7) and (8), u(\) is given by

) = sl + Gl

t—oo I p(x,s) 0

1 1 !
:—lim—maxl)\f j(x,s)ds—I[”O,l](j,p)}, (11)

where the maximum is taken over all the density and current
evolutions such that the conservation law (6) is satisfied.
For a system of length N connected to two reservoirs at
densities p, and p, at its two ends, the calculation of the
large deviation function G(j,) of the current is therefore re-
duced to finding the time-dependent profile p(x,s) which op-
timizes Eq. (8) under the constraints (6) and (9) and with the
additional boundary conditions p(0,s)=p, and p(1,s)=p,.
All the results of our previous work [11] follow then from
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the assumption that this optimal profile does not vary with
time (except from boundary effects near time O and time ¢
which do not contribute in the large 7 limit).

For a system on a ring of N sites, as we shall consider in
the present work, the optimization problem is the same ex-
cept for the boundary condition which becomes p(0,s)
=p(1l,s) and the fact that the total density p, on the ring
becomes an additional conserved quantity

1
f p(x,s8)dx = py.
0

III. CONDITIONS FOR THE STABILITY OF A FLAT
PROFILE

In this section, we consider a lattice gas on a ring of N
sites with total density p, and we determine the condition for
the flat profile (uniformly equal to p;) to be the optimal pro-
file in Egs. (8) or (11).

Under the assumption that the optimal profile in Eq. (8) is

p(x,s) = pg

the large deviation function G(j,) is given [Egs. (5) and (8)]
by

. 2
Gralio) == % (12)

which, by Eq. (11), gives for u(\)

A\ +2v)a(py)

Maa(N) = N (13)

A natural question is whether one could increase G(j)
[and w(N\)] by adding to this flat profile some small (e<<1)
space and time dependent perturbation of the form

J(x,8) = jo + elji(x)cos(ws) + j>(x)sin(ws)]

in which case due to Eq. (6)

p(x.s) = po + 5[—j;<x)sin<ws> + jh(x)cos(ws)].

where j,(x) and j,(x) are periodic functions of period 1. The
resulting expression (8) for G(j,) to second order in € is

o Lio- VU(PO)] J [ J1+J2
G == € 4r(po)
G +IDP)” joliria = jaiD) o (po)
4o a(po) 2w0'2(P0)
2 2
ol B2 p0) VP (py)  jio m”
Ui )<8w2o(p0>2’ 8> 40’ (py)/ ]’

As this expression is quadratic in the currents j; and j,, the
various Fourier modes are not coupled. Choosing for j,(x)
and j,(x)
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J1(x) =a cos(2mx) + b sin(2mx),

Jo(x) = ¢ cos(27mx) + d sin(27x), (14)
one gets
N Lo — vo(po) P [ Joo' (po) 7 -
G(jo) =~ —20'(p0) €| (ad - be) —wol(po) —(d®+b
1 27T4D2(P0) 0" (po)J;
24 P ( 0
rerd) 80(py)  wa(pp) 2w 20”(py)
L VT (o) W'(poyéﬂ
4o do’o™ (py)

The flat profile is stable against the perturbation (14) if
-G (j,) is a positive definite quadratic form in a,b,c,d. This
is achieved when for all w

1 27 DX py) w2 po)js " (po)

8a(py) | wolpy) | 200 (py) | 4w’
~ 7720”(.00)]}2) Joo' (po) (15)
40’0 (py) | 2007(py)

The flat profile becomes therefore unstable if for at least one
w the inequality (15) is not satisfied, i.e.,

87 D*(py)o(py) + [*0*(po) = j5lo"(py) <O (16)
which, given Egs. (11)—(13), can be rewritten as
477D*(pg) < Niga(N) 0" (o). (17)

The first two frequencies to become unstable are
=2mjo0”' (py)/ o(py) [with the amplitudes in Eq. (14) such
that a=d and b=-c] and w=-2mj,0"(py)/ o(py) (with a
=—d and b=c). As we are left with two arbitrary amplitudes
(a and b), the corresponding current is determined up to two
constants A and x

Joo' (po) t)] (18)

Jjx,t)=jo+A cos[277<x - Xo—
a(po)

One should be able to determine the amplitude A by expand-
ing G(j,) to higher order in e whereas the parameter x,
should remain undetermined due to the translation invariance
of the problem.

One could analyze in a similar way the stability of the flat
profile against other modes by choosing j,(x)=a cos(27nx)
+b sin(27nx) and j,(x)=c cos(2mnx)+d sin(27nx) and the
threshold (16) would become

87D (po)n*a(py) + [V 0*(po) = j3lo” (po) < 0.

This shows that the fundamental (n=1) is the first mode to
become unstable.

IV. A SIMPLE TIME DEPENDENT PROFILE

The form (18) suggests that beyond the instability the
optimal profile is a fixed shape moving at a constant velocity
v,

066110-3



T. BODINEAU AND B. DERRIDA

p(x,1) = g(x —vt). (19)
In this section we are going to provide an expression for the
optimal g.
Due to conservation law (6) the current is then
Jx, 1) =jo—vpy+vglx—uvt).

If such a profile is the optimal profile, then the variational
principle (8) reduces to

1
v dx
Glio) = ngiiflfo 20(g()

+D(g(x)g' (x) - vo(g(x)) . (20)

If one expands the square (the terms linear in g’ give a null
contribution due to the periodic boundary conditions), one
gets

Lo —vpo +vg(x)

1
G(jo) =- i(n)f f dx[X(g) + g"*Y ()], (21)
gx),vd o
where
_ Lio—vpo +vg - va(g)]
Xle) = 20(g)
and
_D’(g)
Y(g)= 2olg)’

The optimal v in Eq. (20) is then given by
f dx(g = po) o — vo(g)) f dx(g )

_ o(g) _ o(g)
(g - po)* 0 f (g=py)*’
f D) “ )
(22)

this last simplification being due to the constraint [g(x)dx
=py. With this constraint and for a fixed v, a variational
calculation of the optimal g in Eq. (21) shows that g should
satisfy

X'(g)-2Y(g)g" - g"*Y'(g) = C,.

Multiplying both sides by g’ allows one to integrate once so
that g satisfies

X(g)-g'*Y(g)=C, + Cyg, (23)

where C; and C, are constants [which is an extension of Eq.
(15) of Ref. [11] to the case of the ring].

For fixed j,, py, and v, if one denotes by g; and g, the
two extrema of the profile g [generically, the profile g(x) is a
periodic function of period 1 with a single minimum g; and
a single maximum g,], one can determine the constants C;
and C, by Eq. (23) in terms of g, and g, [as X(g,)=C,
+C,g, and X(g,)=C,;+C,g,]. The differential equation (23)
determines the whole profile (up to a translation on the ring)
and the constants g; and g, are then fixed by the fact that
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1 X(A’z) 82 d 82 Y
P L N —
2 x(gy) a 8 21 X(g)—C-Cyg
and
Po 2 Y(g)
27, Vx@c, o™
¢ (8)—C—-Cyg

V. EXACT NUMERICS FOR THE WEAKLY
ASYMMETRIC EXCLUSION PROCESS ON A RING

In order to support the analytical calculations of Sec. IV,
we wrote a program to calculate exactly w(\) for the weakly
asymmetric simple exclusion process (WASEP) on a ring of
N sites with P=Np particles. In the simple symmetric exclu-
sion process (SSEP), each particle jumps to its right at rate %
and to its left at rate % and the functions D(p) and o(p) are
given [2] by

1
Dgspp= 2 (24)

ossep=p(1 = p). (25)

If one introduces a weak electric field to the right, the model
becomes the WASEP and the rates become %+ v/2N to the
right and 1/2—-v/2N to the left.

As the evolution is a Markov process, one can build, as
explained in Refs. [21,22] from the Markov matrix, a
N\-dependent matrix, the largest eigenvalue of which is u(\)
defined by Eq. (10). According to the linear stability analy-
sis, the flat profile becomes unstable [Eq. (16)] for

Js<p(1=p)[p(1 - p) - 7]
or by Eq. (17) for

NptgaN) <~ ? (26)
We have calculated the exact eigenvalue w(\) for lattice
sizes from N=6 to 22, at density 1/2 for an asymmetry v
=10 (in order to avoid negative rates for small system sizes,
we have replaced in our programs the rates %tv/ZN by
exp[2v/N]/2). The results in Fig. 1 show a rather quick
convergence with increasing N towards the value corre-
sponding to a shape determined by Eq. (20). Clearly the flat
profile gives a value too low, incompatible with the numeri-
cal data.

VI. A BRIDGE BETWEEN A WEAK AND A STRONG
ASYMMETRY

In this section, we consider the large v limit and derive
the asymptotic large deviation functional as well as the limit
of the optimal profiles discussed in Sec. IV.

We assume that the optimal profile is the traveling wave
(19) and we consider current deviations of the form
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T T
111

____________

A
[}
T TTTT

1
-20 -15 -10 -5
A

o

FIG. 1. p(\) as defined by Eq. (10) for the weakly asymmetric
exclusion process on a ring of N=6, 10, 14, 18, 22 sites when the
asymmetry parameter v=10 and the density 1/2 (thin lines). As N
increases, the data increase and seem to accumulate to the value
predicted (dashed line) by assuming that the optimal profile is the
one discussed in Sec. IV. If the optimal profile had been flat, the
curve would have been predicted by Eq. (13) (thick line). The hori-
zontal dotted line gives the value of u below which the flat profile
becomes unstable [Eq. (26)].

Jo = Vip- (27)

Then for large v, the moving profile which satisfies (23)
becomes very steep in the regions where it varies. This is
illustrated for the WASEP in Fig. 2 where several traveling
waves are represented for increasing values of v (with iy=0).
More precisely, the optimal profile takes the form of a step
function with two constant values g; and g, separated by two
discontinuities,

gx)=g, for0<x<y,

glx)=g, fory<x<l, (28)

so that the parameters g, g», and y are related to p, and i,
by

po=yg1+(1-y)g,, (29)

ip=yo(g)) + (1 -y)o(gy). (30)

The expression of the velocity (22) then becomes

0.8 Z
plz) OO

04 =

0.2 - -

0E ] 1 -
0 0.2 0.4 0.6 0.8 il
X

FIG. 2. The optimal profile for the WASEP when j,=0 and p
=1/2. The different curves correspond to several values of v (v
=6.34, 7.98, 12.0, 21.1). According to Eq. (17) the flat profile is
optimal for v<2w=6.28.
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:VU'(gz) 0'(81). 31)
8281
Then using the fact that g’ vanishes when g(x)=g; or g,
and replacing Egs. (27) and (29)—(31) into Eq. (23) implies
that the constants C;,C, [in Eq. (23)] vanish at order 1°.
Thus asymptotically in v, one can rewrite Eq. (23) as

12 2

g = 5182l o(g)) — a(g) ]+ gi[o(g) — a(gy)]

" D(g)(g, - g0)
+ glolgy) — alg)) P (32)

and

Gljg) = 1 f — B eloe) - o(9)]+ gilo(e)
U'(g)(gl - gz)

- o(g)]+glo(g) — olg )T (33)

If one replaces g by its expression (28), one gets that the
order 1* of G(j,) vanishes. The next order in the large v
expansion is dominated by the rounding-off of the disconti-
nuities in (28) as given by (32). As the profile g(x) is com-
posed of two monotonic parts one can then use (32) into (33)
and obtain for g,> g,

G(jo) —_ vagz dgA

(gz _ gl)a_(g) |U(g)(g2 - gl)
81

—o(g)(g2-g) —a(gx)(g— g1

It is remarkable that y is not present in this expression. In the
case of the weakly asymmetric exclusion process on a ring,
expressions (24) and (25) of D(p) and o(p) lead for large v
to

. 82
G(jo)=- V[gz — 81 —81821ng_
1

l1-g
—(1—g1)(1—g2)ln< ‘)} (34)
1-¢
In this case (31) becomes v=v(1-g,—g,).
If one takes formally v=N, the hopping rates 1/2+v/2N
become 1 and 0, so that the model reduces to the totally

asymmetric exclusion process and one gets from Egs. (7),
(27), and (34)

Or . 82
PT(’(_:lo ~exp)—T| g - g1 —gi8In—
T 81

—(1—g1>(1—g2)ln<l_g‘>”. (35)

I-g

As we will see in Sec. VII, this is exactly the large deviation
function predicted by the Jensen-Varadhan theory [18] to
maintain a profile (28) formed of a shock and an antishock in
the totally asymmetric exclusion process. Other aspects of
the relation between the large deviation functional of the
weakly asymmetric exclusion process and the Jensen-
Varadhan functional in systems with open boundary condi-
tions will be presented in Ref. [23].
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VII. LARGE DEVIATIONS OF THE CURRENT IN THE
TOTALLY ASYMMETRIC EXCLUSION PROCESS

In the totally asymmetric simple exclusion process
(TASEP), each particle jumps to its neighboring site, on its
right, at rate 1, if the target site is empty (and there is no
other jump).

The large deviations of the current of the totally asymmet-
ric exclusion process on a ring of N sites, with P particles,
have been calculated exactly [21,24]. If Oy is the total num-
ber of jumps during time 7 over a given bond on the ring,
one knows that for large 7,

(eM21) ~ orNT (36)

and explicit expressions of w(\) have been obtained for all N
and P by the Bethe ansatz [21,24].

For large N, it was shown in particular [Eq. (53) of Ref.
[24] with the proper redefinition of the parameters] that for
A<O0

(1= eMo)(1 = eM170)
(1-¢ '

We are now going to argue that this result can be under-
stood, by assuming that Eq. (36) is dominated by configura-
tions of the form (28) moving at a velocity v=1-g,—g,.
These density profiles are everywhere constant except for a
shock [at some position z with g(z—0)=g, and g(z+0)=g,
for g,>g,] and an antishock [at position z+y with g(z+y
-0)=g, and g(z+y+0)=g,]. From the Jensen-Varadhan
theory [18], the probability of maintaining such a shape
moving at this velocity on the ring over a very long period of
time 7 reduces to the probability of maintaining an antishock
between the densities g, and g; moving at velocity v. The
probability of the latter event, which we denote by Pr(g;,g»)
is given [18] by

pm(N)=— (37)

82
Pr(g1.82) ~ CXP{— T[gz—gl —glgzlng_
1

—<1—g1>(1—g2>1n<1:§;)” (38)

The corresponding integrated current Q7 is
Qr=Tlyg(1-g) +(1-y)gx(1-g))]

since over a long period of time 7 a given bond spends a
fraction y of the time at density g; and 1-y at density g».

Therefore, if the configurations of the form (28) dominate
the large deviations of the current, one expects

m(N) = max{)\[)’gl(l —g)+ (1 -y)g(l-g)]- {gz—gl

»E18
8 l1-¢g
—81821H_2—(1—g1)(1 —g2)1n< 1)}}, (39)
81 l-¢
where the maximum has to satisfy the constraint
po=yg1+(1-y)g. (40)

A calculation of the optimum in Eq. (39), with the con-
straint (40) leads to
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eMo— |

eM—1

o — M1=pp)
eM—1

and Eq. (39) becomes Eq. (37).

This shows that the result of the Bethe ansatz (37) can be
physically understood in terms of an optimal profile which
takes the form of the step function (28). The probability of
maintaining this profile is given by the Jensen-Varadhan ex-
pression (38) which in fact is identical to Eq. (35) obtained,
in the large v limit, for the WASEP from the hydrodynamic
large deviation theory.

That the fluctuations are due, in the strong asymmetric
case, to configurations formed by a gas of shocks and anti-
shocks has been already pointed out by Fogedby [28-30].
The calculation of this section shows that the large deviation
of the current, in the range A\ <0, can be understood quanti-
tatively in terms of a single pair of shock-antishock. Whether
the Fogedby theory would allow us to understand all the
current fluctuations, including the range A >0 where the ex-
pression of w(\) is more complicated [24] than Eq. (37),
remains an interesting open question.

81= 5 82F

VIII. CONCLUSION

In the present work we have determined the limit of sta-
bility (16) and (17) of a flat profile for a diffusive lattice gas
on a ring. This instability beyond which the optimal profile
becomes modulated is of the same nature as the phase tran-
sition found for several other nonequilibrium systems
[12,25-27]. As the calculation is based on a local stability
analysis, one cannot of course exclude first order transitions,
i.e., that the flat profile might become globally unstable. In a
recent work [31], a sufficient condition on (D,o) was ob-
tained to ensure that there is no phase transition irrespective
of the current j, and the density p,. We did not find a simple
way to compare this global stability condition to our local
stability criterion (16).

In Sec. V, we have obtained numerical evidence that the
macroscopic fluctuation theory predicts correctly the large
deviation function of the current for the weakly asymmetric
exclusion process. The numerical results are consistent with
the second order phase transition predicted in Sec. III, and
with a modulated density profile moving at a constant veloc-
ity as suggested in Sec. I'V. These results could in principle
be confirmed by solving the Bethe ansatz equations for the
WASEDP, since w(\) can be calculated exactly for the ring
geometry [32,33].

It would be interesting to extend the results of the present
work to the case of open boundary conditions. One difficulty
is that the time-independent profile, found in Ref. [11], is
much more complicated than the flat profile for the ring ge-
ometry, and we did not succeed so far to obtain the condition
which would generalize Egs. (16) and (17) for this open
geometry.

Lastly, we noticed that the large deviation function (35)
obtained for the weakly asymmetric diffusion process in the
large drift limit is identical to the one predicted for a strong
asymmetry by the Jensen-Varadhan theory (38) (see also Ref.

[23]).
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Despite this bridge between the large deviation function
of the current of weakly and strongly asymmetric systems,
and some recent results on zero-range processes [17], a
theory of current fluctuations for strongly asymmetric lattice
gas such as the ASEP with open boundary conditions re-
mains an open problem.
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T/T NIl

Pro({g;.p;}) ~ exp| - E E ;(‘b(kﬂ +D(p,(k7))

=1 i1 200pkT)T
l

The factor v/N comes from the weak asymmetry of the
jumps. Clearly the conservation of the number of particles
gives

qi-1(5) = qils)
pils + 1) = pi(s) + % (A1)
Now if one takes a continuous limit by writing
il s
(s)=pl —.— A2
pi(s) p<N N2> (A2)

and one defines a rescaled current by
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APPENDIX: A DERIVATION OF EQS. (4) and (5)

We present here a heuristic derivation of the hydrody-
namic large deviations (4). Let us consider a system of N
sites and decompose it into N/I boxes of [ sites each. Let us
define the density p,(¢) in box i at time 7 and ¢,(¢) the total
number of particles transferred from box i to box i+ 1 during
a time interval 7,7+ 7 [this time 7 should be large enough for
the ¢;(¢) to be a Gaussian characterized by its average and its
variance as in Egs. (1) and (3), but short enough compared to
the characteristic time of variation of the densities p;(¢)].

In order to compute the probability of an evolution {g;, p;}
over the microscopic time interval [0, 7], we assume that the
local currents g;(r) are Gaussian and independent. The mean
and the variance are given by Egs. (1) and (3) applied to a
chain of length /,

pir1(k7) = pi(kT) a(p,(k1)) )2
; T—V N 7| .

T(E s
q:(s) = X’J<N’N2> (A3)

one gets for the probability of observing a trajectory {j,p}
over the microscopic time interval [0, 7]

Pro({,p})
T/N?
~exp| =N f ds
0
< L L) + Do) HEE - vatptes) |
0 20(p(x,s))

which is exactly Egs. (4) and (5). Furthermore, Eq. (A1) with
the scaling (A2) and (A3), leads to Eq. (6).
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